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Coherence of a squeezed sodium atom laser
generated from Raman output coupling
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The coherence of a squeezed sodium atom laser generated from a Raman output coupler, in which the
sodium atoms in Bose-Einstein condensate (BEC) interact with two light beams consisting of a weaker
squeezed coherent probe light and a stronger classical coupling light, is investigated. The results show
that in the case of a large mean number of BEC atoms and a weaker probe light field, the atom laser is
antibunching, and this atom laser is second-order coherent if the number of BEC atoms in traps is large
enough.
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The achievements of atomic Bose-Einstein condensate
(BEC) and atom laser have pioneered a new research
area of atomic physics and optics[1−3]. As a laser is made
through the coupling output from a laser cavity of a co-
herent photon beam by means of a partial reflection mir-
ror, a coherent beam, i.e., “atom laser”, can be formed
similarly when the ultra-cooling atoms are drawn out of
the BEC in the trap. In 1997, Mewes et al. created an
atom laser with the atom output from BEC by use of
the radio frequency[4]. In 1999, Hagley et al. successfully
developed the atom laser apparatus with controllable, ad-
justable, highly collimated, and “quasi continuous” char-
acteristics, and made an important breakthrough in the
development of a laser apparatus of the matter wave[5].
In recent years, scientists have put huge efforts into

the investigation of the atomic BEC and the atom
laser. They have already made a series of important
successes[6−20]. In this letter, we present a scheme to gen-
erate a squeezed atom laser via stimulated Raman tran-
sition of the atoms in BEC interacting with two light
beams, including a weaker squeezed coherent probe light
and a stronger classical coupling light. The coherence of
this atom laser is also analyzed.
We consider a Raman coupling system as follows. A

large number of BEC sodium atoms in a trap are in the
trapped state |1〉(3S1/2, F = 1, mF = −1), which is
coupled to the state |3〉(3P3/2, F = 2) via a weaker
squeezed coherent probe light field with frequency ω1,
and the state |3〉 is coupled to the untrapped state
|2〉(3S1/2, F = 1, mF = 0) via a stronger classical cou-
pling light field with frequency ω2. We assume that each
light beam is identically largely detuned from |1〉 → |3〉
and |2〉 → |3〉 transitions. The interaction scheme is
shown in Fig. 1. The coupling output of the atom beam
in the untrapped state |2〉 should form the sodium atom
laser. It is necessary to point out that our scheme is in
a departure from that of Ref. [5], that is, we replace the
general laser by a squeezed coherent probe light.
The second quantized Hamiltonian describing the above

system takes the following form (h̄ = 1) :

H = Hp + Ha + Haf + Haa, (1)

where Hp and Ha give the free evolution of the probe-
light field and the atomic fields respectively, Haf and Haa

describe the interaction between the atomic fields and
the two light fields and the inter-atom interaction, re-
spectively. They are respectively given by

Hp = ω1a
†
1a1, (2)

where a†1 and a1 denote the photon creation and annihi-
lation operators of the probe-light field;

Ha =
3∑

i=1

νib
†
i bi, (3)

where b†i and bi represent the atom creation and annihi-
lation operators in the state |i〉(i = 1, 2, 3), and νi gives
the energy of i-mode with h̄ = 1;

Haf = (g1b
†
3a1b1e−iω1t + g∗1a†1b

†
1b3eiω1t)

+(g2b
†
3b2e−iω2t + g∗2b†2b3eiω2t), (4)

where g1 and g2 stand for the light-atom dipole interac-
tion constants; and

Haa =
3∑

i=1

λib
†2
i b2

i +
3∑

i,j=1
(i6=j)

λijb
†
i b
†
jbibj , (5)

Fig. 1. Three-level Λ-shaped atoms coupled to two light
beams[5].
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where λi and λij (i, j = 1, 2, 3) describe the inter-atom
interactions.
Taking an interaction picture, we assume the Hamilto-

nian to be the sum of the free evolution Hamiltonian H0

and the interaction Hamiltonian V :

H = H0 + V, (6)

where

H0 = ω1a
†
1a1 + ν1

3∑

i=1

b†i bi

+(ω1 − ω2)b
†
2b2 + ω1b

†
3b3, (7)

V = (ν3 − ν1 − ω1)b
†
3b3 + (g1b

†
3a1b1 + g∗1a†1b

†
1b3)

+(g2b
†
3b2 + g∗2b†2b3) +

3∑

i=1

λib
†2
i b2

i

+
3∑

i,j=1
(i6=j)

λijb
†
i b
†
jbibj . (8)

We suppose that a large enough number of BEC atoms
in the trap are in the trapped state |1〉 at the initial mo-
ment. Neglecting the thermal excitation and the quan-
tum depletion, the states |2〉 and |3〉 can be treated as
vacuum states. In the case of the large detuning for a
weaker probe light field and a stronger coupling light
field, the atom numbers in the states |2〉 and |3〉 are sub-
stantially less than that in state |1〉 and do not have a
noticeable change. On the one hand, the inter-atom in-
teraction of the atoms in the states |2〉 and |3〉 can be
neglected. Therefore, Eq. (8) can be simplified as

V = (ν3 − ν1 − ω1)b
†
3b3 + (g1b

†
3a1b1 + g∗1a†1b

†
1b3)

+(g2b
†
3b2 + g∗2b†2b3) + λ1b

†
1b
†
1b1b1. (9)

On the other hand, the atomic operators b3 and b†3 can
be adiabatically eliminated from Eq. (9) by the equa-

tions b3 = −g1a1b1 + g2b2

ν3 − ν1 − ω1
and b†3 = −g∗1a+

1 b+
1 + g∗2b+

2

ν3 − ν1 − ω1
,

since iḃ3 = [b3, V ] ≈ 0 and iḃ†3 = [b†3, V ] ≈ 0 from the
Heisenberg equations. Hence, Eq. (9) can be reduced to

V = −ω′2b
†
2b2 − (g′b†2a1b1 + g′∗a†1b

†
1b2)

−ω′1a
†
1b
†
1a1b1 + λ1b

†2
1 b2

1, (10)

where ω′1 = |g1|2
∆ , ω′2 = |g2|2

∆ , and g′ = g1g∗2
∆ with the de-

tuning ∆ = ν3−ν1−ω1. Similarly, since iḃ2 = [b2, V ] ≈ 0
and iḃ†2 = [b†2, V ] ≈ 0 from the Heisenberg equations, the
atomic operators of state |2〉 can be deleted in Eq. (10)

by relations b2 = − g′a1b1
ω′2

and b†2 = − g′∗a+
1 b+1

ω′2
. Therefore,

the final effective interaction Hamiltonian is given by

Veff = 2ω′1a
†
1a1b

†
1b1 + λ1b

†
1b
†
1b1b1. (11)

Assuming that at the initial moment all the BEC atoms
stay in the coherent state |β〉 and the probe light field is

in the squeezed coherent state |α, ξ〉, we can write the
initial state vector as

|Ψ(0)〉 = |α, ξ〉 ⊗ |β〉, (12)

where

|α, ξ〉 = e−
1
2 |α|2+ tanhr

2 α2
∞∑

n=0

1√
n!

1√
cosh r

(
tanh r

2

)n/2

×Hn

(
α√

2sinh rcosh r

)
|n〉, (13)

|β〉 = e−
|β|2
2

∞∑
m=0

βm

√
m!
|m〉, (14)

where ξ = reiθ, α =
√

n̄eiϕ, n̄ denotes the mean number
of photons of the probe light field and r is the squeezing
factor, Hn(x) is the n-order Hermite polynomials in Eq.
(13), β =

√
N̄1eiη in Eq. (14). For simplicity, we take

θ = 0, ϕ = 0, η = 0.
To solve the Schröinger equation, we obtain the state

vector of the system at any moment t > 0 as

|Ψ(t)〉 =
∞∑

n,m=0

exp
{
− 1

2
|α|2 +

tanh r

2
α2 − |β|2

2

−i[2ω′1nm + λ1m(m− 1)]t
}

× 1√
n!m!

βm

√
cosh r

(
tanh r

2

)n/2

×Hn

(
α√

2sinh r cosh r

)
|n,m〉. (15)

Next, we will investigate the coherent properties of the
atom laser by calculating the second-order normalized
correlation functions of this atom laser:

g(2) =
〈b†2b†2b2b2〉
〈b†2b2〉2

=
〈(b†2b2)2〉 − 〈b†2b2〉

〈b†2b2〉2
, (16)

where b2 = −g′a1b1

ω′2
and b†2 = − g′∗a†1b†1

ω′2
.

In the case of a weaker probe light field and the mean
number N̄1 of BEC atoms at the initial moment t = 0
is so large that the influence of transition of the mean
number of BEC atoms can be neglected in the evolution
of the system, the state vector of the system at any mo-
ment t > 0 can be simplified as follows. Firstly, since the
mean number of BEC atoms is large enough, the popu-
lation function Pn of BEC atoms can be approximately
replaced by a δ-function as shown in Fig. 2, and the sum
can be transformed into the integral in Eq. (15) as

∞∑
m=0

e−N̄1N̄m
1

m!
→

∫ ∞

0

dmδ
(
m− N̄1

)
. (17)

Secondly, since the number of the photons is much less
than that of the BEC atoms for the weaker probe light
field, the state vector in Eq. (15) is finally reduced to
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Fig. 2. Population function Pn of BEC atoms with N̄1 =
10000.

|ψ(t)〉 = e−iλ1N̄1(N̄1−1)te−
1
2 |α|2+ tanh r

2 α2

∞∑
n=0

e−i n ω t 1√
n!

1√
cosh r

(
tanh r

2

)n/2

×Hn

(
α√

2sinh r cosh r

)
|n〉|N̄1〉, (18)

where ω = 2ω′1 N̄1 = 2 |g1|2
∆ N̄1.

Using b2 = − g′a1b1
ω′2

, b†2 = − g′∗a†1b†1
ω′2

, and Eq. (18), we
find that in the state |ψ(t)〉, the second-order normalized
correlation functions of the atom laser can be expressed
as

g(2) = 1− 1
N̄1

. (19)

For a huge N̄1, g(2) → 1, the atom laser is second-order
coherent. Since in the experiment made by Hagley et
al.[5], the number of atoms reaches the order of 106, their
atom laser should has a very good coherence.
In summary, we have proposed a theoretical model

and constructed its Hamiltonian regarding the system
of Λ-type three-level atomic BEC interacting with two
light beams, via stimulated Raman transition. We have
also investigated the second-order coherent properties of
the atom laser extracted from this system. Our results
demonstrate that in the case of a large mean number
of BEC atoms and a weaker probe light field, the atom
laser is antibunching, and this atom laser is second-order
coherent if the number of BEC atoms in traps is large

enough.
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